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Abstract

In this paper, the power penalty analysis for approximate and realistic weight functions has been
presented for combating the pulse broadening effects of group-velocity dispersion in a fiber-optic
communication link using differential time delay method including higher-order dispersion terms.
The expressions for root mean square (RMS) phase deviation, optimum chirp factor and figure of
merit have been evaluated for approximate and realistic systems. We show that the optimum value of
chirp factor corresponds to dispersion compensation. The power penalty graphs for second-, third-,
and fourth-order dispersion and their combinations have been presented for distance up to 300 km
for this chirp factor for different weight functions. It is observed that the power penalty for realistic
weight functions is less in comparison with the approximated weight function. It has also been shown
that it is possible for a short pulse to propagate without significant broadening over the lengths many
times longer than the usual dispersion length of fiber.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Recently, there has been great interest in using single mode fibers for high-bit-rate
transmission in low-loss-transmission windows but dispersion is an important impairment
that degrades overall system performance of an optical communication system. At high-bit
rate, the dispersion-induced broadening of short pulses propagating in the fiber causes
crosstalk between the adjacent time slots, leading to errors when the communication
distance increases beyond the dispersion length of the fiber. Higher-order dispersion terms
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are the forces destructive of pulse propagation in ultra high-bit rate optical transmission
system and cause power penalty in the system. The power penalty in presence of
impairment is defined as the increase in signal power required (in dB) to maintain the
same bit error rate as in the absence of that impairment. Therefore, in order to realize
the high data rates over long distances down the SM fiber, techniques must be found to
overcome the pulse spreading and reduce power penalty due to dispersion. Various methods
for dispersion compensation have been reported in [1–14].

The work on dispersion compensation by differential time delay was first reported
in [14]. The proposed scheme was intended for high-bit rate (> 10 Gb/s) time division
multiplexed transmission, and it was shown that the transmitting distance could be
enhanced by a factor of 4 in an approximate case and in the order of 2.5 in realistic
conditions in dispersive limited system. In this technique, the analysis and implementation
was based on the individual second-order (2OD) term of the propagation constant. Further,
it was proved that it was superior to other existing methods.

Earlier, an attempt was made by us to compensate dispersion using above technique by
using other higher-order dispersion terms [15] using unity weight function. Paper presented
the improved analysis of dispersion compensation using third- and fourth-order (3OD
and 4OD) dispersion terms individually. The parameters such as RMS phase deviation,
figure of merit, and dimension free chirp parameter were evaluated and analyzed for this
approximate optical systems for 2OD, 3OD, and 4OD.

Also we had reported our work on dispersion compensation by differential time delay
using higher-order terms selectively [16] again with unity weight function. Combined
effects of higher-order terms (2OD+ 3OD) and (3OD+ 4OD) had been analyzed when
they are considered together instead of individual terms as reported in [14,15]. Further, we
had again reported work on dispersion compensation by same method using higher-order
terms together [17] for the same weight function. Combined effects of higher-order terms
(2OD+ 3OD+ 4OD) had been analyzed. Again, the same parameters were evaluated for
combined terms. The power penalty analysis was not reported in our earlier work [15–17]
for higher-order dispersion terms.

The unity weight function means that we would require a sinc as the pulse envelope in
the system. This corresponds to the approximate case and should have high power penalty
as compared to realistic systems. Therefore, it is very important to analyze the results for
the realistic (weight functions) optical communication systems.

In this paper, we extend our work reported in [15–17] and derive the expression for
power penalty and calculate it for approximate and different realistic weight functions. We
show that the figure of merit decreases for realistic optical communication systems. We
also show that for zero value of chirp factor, the power penalty is minimum. The Section 2
deals with the theory of differential delay dispersion compensation method and derivation
of expression for power penalty including higher-order dispersion terms. In Section 3, we
first reproduce the approximate case [17] for deriving expression for RMS phase deviation,
dimension free chirp parameter and figure of merit for approximate optical communication
systems by considering all higher-order dispersion terms together for unit weight function.
We then derive same expressions for three more realistic weight functions. Based on similar
derivations, we report all our results [15–17] in the form of table. We then in Section 4 use
these results (chirp parameter) to plot power penalty for all the different cases of individual
dispersion terms and their combinations for different weight functions. The comparisons
in power penalty are made and conclusions are drawn.
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2. Power penalty analysis including higher-order dispersion

We begin with the fundamental observation that dispersion in an optical fiber is a linear
process when power levels are kept below those required the onset of self-phase modulation
or stimulated Raman scattering or nonlinear effects. Thus, the transmission characteristics
of a single mode fiber can be represented by a linear filter, which can be derived by
Taylor expansion of the propagation constantβ about the optical carrier frequencyω0

as mentioned in [14,15]

β = β0 + 1

vg
(ω − ω0) − λ2D

4πc
(ω − ω0)

2 + 1

6
(ω − ω0)

3 d3β

dω3

+ 1

24
(ω − ω0)

4 d4β

dω4 + · · · , (1)

wherevg = dω/dβ is group velocity andD is standard group delay dispersion parameter
given by

D = ∂

∂λ

(
1

vg

)
= −2πc

λ2

∂2β

∂ω2
. (2)

For simplicity, the propagation constant can be expressed as

β = β0 + (�ω)D1 + 1
2(�ω)2D2 + 1

6(�ω)3D3 + 1
24(�ω)4D4 + · · · , (3)

where

D1 = ∂β

∂ω
, D2 = ∂2β

∂ω2 , D3 = ∂3β

∂ω3 , D4 = ∂4β

∂ω4 (4)

are first-, second-, third-, and fourth-order dispersion terms, respectively.
At the receiver, the phase deviation may be expressed as

φ = φ0 − βL, (5)

whereL is transmission distance of the fiber.
Therefore

φ = φ0 − β0L − (�ω)D1L − 1
2(�ω)2D2L − 1

6(�ω)3D3L

− 1
24(�ω)4D4L − · · · . (6)

First two terms on right-hand side of Eq. (6) are constant phase contributions and third term
gives pure time delay. In the analysis the demands of absolute phase and time has been
neglected. The phase contributions offered by the higher-order terms have been analyzed
for different cases as discussed in [15–17].

The calculation of RMS value of phase deviation is the most common way to know the
degradation in the dispersive systems. The phase deviation for the compensating device
can be expressed as

φnRMS =
[ ω+ω0∫

ω−ω0

P(�ω)φn(total)2 dω

2ω0

]1/2

, (7)
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wheren = 1, 2, 3, 4 correspond to the dispersion terms andP(ω) is the dimension free
weight function.

The deviation in time for arrival of frequencies can be expressed as

�t = t − t0 = −dφn

dω
, (8)

wheret0 is the arrival for the carrier frequency.
In general, the dispersion compensation is based on spectral separation of the signal

in upper and lower sidebands and after providing differential time delay they are
synchronously combined together for further transmission and detection. The upper and
lower sidebands are separated through an integrated interferometer and time delay is
provided in each arm.

We know derive expression for power penalty for dispersive optical communication
systems by including higher-order dispersion terms. The propagation equation comprising
of dispersion terms up to the fourth-order can be written as [18]

∂A

∂z
+ D1

∂A

∂t
+ iD2

2

∂2A

∂t2
− 1

6
D3

∂3A

∂t3
+ iD4

24

∂4A

∂t4
= 0. (9)

We consider propagation of Gaussian pulses in the optical fibers by considering the
initial amplitude as

A(0, t) = A0 exp

[
−1+ iC

2

(
t

T0

)2]
, (10)

whereA0 is the peak amplitude and parameterT0 represents half width at 1/e intensity
point and is related with full width at half maximum (FWHM) by the relation

TFWHM = 2(ln2)1/2T0. (11)

The parameterC governs linear frequency chirp imposed on the chirp. A pulse is chirped
if it’s carrier frequency changes with time. The frequency change is expressed by Eq. (8)
and is given by

δω = −∂φ

∂t
= C

T 2
0

t . (12)

The time-dependent quantityδω is called the chirp. Its inclusion is important since
semiconductor lasers generally emit pulses that are considerably chirped. The Fourier
spectrum of chirped pulse is broader than that of the unchirped pulse. Taking Fourier
transform of the initial pulse amplitude, we get

A(0,ω) = A0

(
2πT 2

0

1+ iC

)
exp

[
− ω2T 2

0

2(1+ iC)

]
. (13)

The pulse propagation equation can be easily solved in the Fourier domain, its solution is
given by

A(z, t) = 1

2π

∞∫
−∞

A(0,�ω)exp

[
iD1z�ω + i

2
D2z�ω2 + i

6
D3z�ω3

+ i

24
D4z�ω4 − i�ωt

]
d(�ω). (14)
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Integrating the equation and findingT/T0 at 1/eth intensity point, we get

T

T0
=

[(
1+ CD2z

T 2
0

)2

+
(
D2z

T 2
0

)2

+ (
1+ C2)(D3z

2T 3
0

)2

+ (
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2T 4
0

)2]1/2

. (15)

The broadening factor is defined asσ/σ0, whereσ0 is the RMS width of the input Gaussian
pulse (σ0 = T0/

√
2) as given in [18]. Substituting in Eq. (15), we get

σ
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=
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2σ 2
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(
D2z
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)2

+ (
1+ C2)1
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8σ 4
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. (16)

The power penalty is given at by

PP = 10 log10
σ

σ0
. (17)

The RMS pulse width should be such that 4σ0 � 1/B, whereB is the bit rate. By choosing
the worst-case conditionσ0 = 1/4B, the power penalty atz = L is given by

PP = 5 log10
[(

1+ 8CD2B
2L

)2 + (
8D2B

2L
)2 + (

1+ C2)1
2

(
16D3B

3L
)2

+ (
1+ C2 + C4)(32D4LB4)2]

, (18)

which is the desired expression for power penalty due to higher-order dispersion terms.

3. Optimum chirp and figure of merit for realistic weight functions

In this section, we derive/reproduce expressions for optimum chirp factor and figure of
merit for approximate and realistic weight functions. In Eq. (5) neglecting the demands of
absolute phase and time at the receiver side and considering the 2OD, 3OD, and 4OD term,
the phase deviation can be expressed as

φ234= 1
2(�ω)2D2L + 1

6(�ω)3D3L + 1
24(�ω)4D4L. (19)

The time delay in the arms of the interferometer can be expressed as±C234ωcl(D2L/2+
D3L�ω/4+ D4L�ω2/12), whereC234 is the dimensionless parameter andωcl is the an-
gular clock frequency of the system. The total phase deviation can be expressed as

φ234(total) = D2L
(
�ω2 ± C234ωcl�ω

)
/2+ D3L

(
2�ω3 ± 3C234ωcl�ω2)/12

+ D4L
(
�ω4 ± 2C234ωcl�ω3)/24. (20)
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3.1. Case I

We reproduce the general case reported in [17] to evaluate the expression for RMS
phase deviation, dimension free chirp parameter and figure of merit for approximate optical
communication systems using higher-order dispersion terms together.

Substituting Eq. (20) in Eq. (7) forn = 234 andP(ω) = 1 = P(1)

φ234RMS= L

24
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. (21)

At ω = ωcl, φ234RMSis found to be
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Hence atω = ωcl in terms ofD4, D2 = ω2
clD4/2, andD3 = ωD4. Eq. (22) reduces to
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φ234RMS= D4ω
4
clL
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[
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]1/2
, (24)

φ234RMS= D4Lω4
cl

24

√
α, (25)

where

α = 20.311− 60.5C234+ 46.57C2
234. (26)

To minimize the RMS value of phase deviation, putting dα/dC234 = 0, it follows that
C234= 0.65. Substituting in Eq. (24) to give the optimum value

φ234RMS(opt) = D4Lω4
cl

2

√
0.6618. (27)
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Further withC234= 0, we get

φ234RMS(C234= 0) = D4Lω4
cl

2

√
20.311. (28)

The figure of merit for dispersion compensating device can be found from Eqs. (27)
and (28)

G234= φ234RMS(C234= 0)

φ2342RMS(opt)
= 5.54. (29)

3.2. Case II

We now derive the expression for optimum chirp factor and figure of merit using the
same method but taking realistic weight functionP(ω) = 1−|ω/ωcl| = P(2). Substituting
Eq. (20) in Eq. (7) forn = 234 andP(2), we get

φ234RMS= L

24
√

ωcl

[ ωcl∫
0

(
1−

∣∣∣∣ ω

ωcl

∣∣∣∣
){

12D2
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ω2 − C234ωclω

)

+ 2D3
(
2ω3 − 3C234ωclω

2) + D4
(
ω4 − 2C234ωclω

3)}2 dω

]1/2

. (30)

Hence atω = ωcl in terms ofD4, D2 = ω2
clD4/2, andD3 = ωD4. Eq. (30) reduces to

φ234RMS= D4ω
4
clL

24

[
2.965− 10.155C234+ 9.243C2

234

]1/2
, (31)

φ234RMS= D4Lω4
cl

24

√
α, (32)

where

α = 2.965− 10.155C234+ 9.243C2
234. (33)

To minimize the RMS value of phase deviation, putting dα/dC234 = 0, it follows that
C234= 0.55. Substituting in Eq. (32) to give the optimum value

φ234RMS(opt) = D4Lω4
cl

2

√
0.175. (34)

Further withC234= 0, we get

φ234RMS(C234= 0) = D4Lω4
cl

2

√
2.965. (35)

The figure of merit case for dispersion compensating device can be found from Eqs. (34)
and (35)

G234= φ234RMS(C234= 0)

φ2342RMS(opt)
= 4.11. (36)
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3.3. Case III

We now derive the optimum chirp factor and figure of merit using the same method but
taking realistic weight functionP(ω) = cos2(πω/2ωcl) = P(3).

Substituting Eq. (20) in Eq. (7) forn = 234 andP(3), we get

φ234RMS= L

24
√

ωcl

[ ωcl∫
0

cos2
(

πω

2ωcl

){
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)
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(
2ω3 − 3C234ωclω

2) + D4
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3)}2 dω

]1/2

. (37)

Hence in terms ofD4, D2 = ω2
clD4/2, andD3 = ωD4. Eq. (37) reduces to

φ234RMS= LD4

24
√

2ωcl

[ ωcl∫
0

(
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1 + I ′′

2

)
dω
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(
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)
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)
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(
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dω, (39)
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2 =
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0
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(
πω

ωcl

)
I ′′
1 dω. (40)

Substituting the values atω = ωcl

φ234RMS= D4ω
4
clL

24

[
3.35917− 12.685C234+ 12.86C2
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]1/2
, (41)

φ234RMS= D4Lω4
cl

24

√
α, (42)

where

α = 3.35917− 12.685C234+ 12.86C2
234. (43)

To minimize the RMS value of phase deviation, putting dα/dC234 = 0, it follows that
C234= 0.49. Substituting in Eq. (42) to give the optimum value

φ234RMS(opt) = D4Lω4
cl

2

√
0.23. (44)

Further withC234= 0, we get

φ234RMS(C234= 0) = D4Lω4
cl

2

√
3.35917. (45)
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The figure of merit for dispersion compensating device can be found from Eqs. (44)
and (45)

G234= φ234RMS(C234= 0)

φ2342RMS(opt)
= 3.82. (46)

3.4. Case IV

Taking realistic weight function

P(ω) = 10

9
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(
πω

2ωcl

)
− 1

9
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(
3πω

2ωcl

)
= P(4).

Substituting Eq. (20) in Eq. (7) forn = 234 andP(4), we get
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. (47)

Hence in terms ofD4, D2 = ω2
clD4/2, andD3 = ωD4. Eq. (47) reduces to

φ234RMS= LD4

24
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cl
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)
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cl
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)
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1 dω, and (50)
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)
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Substituting the values atω = ωcl

φ234RMS= D4ω
4
clL

24

[
2.127− 8.639C234+ 9.897C2

234

]1/2
, (52)

φ234RMS= D4Lω4
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where

α = 2.127− 8.639C234+ 9.897C2
234. (54)

To minimize the RMS value of phase deviation, putting dα/dC234 = 0, it follows that
C234= 0.45. Substituting in Eq. (53) to give the optimum value

φ234RMS(opt) = D4Lω4
cl

2

√
0.24. (55)

Further withC234= 0, we get

φ234RMS(C234= 0) = D4Lω4
cl

2

√
2.127. (56)

The figure of merit for dispersion compensating device can be found from Eqs. (55)
and (56)

G234= φ234RMS(C234= 0)

φ2342RMS(opt)
= 2.976. (57)

Similarly, the RMS phase deviation, dimension free chirp parameter and figure of merit
for independent dispersion terms and their other combinations using same realistic weight
functions can be obtained.

4. Results and discussion

The comparison of various values of optimum chirp(C) and figure of merit(G)

for the approximate and realistic weight functions for independent dispersion terms and
their combinations is shown in Table 1. For the realistic weight functions, theC value
is normally within the interval [0.6–0.48], [0.48–0.39], and [0.39–0.32] andG value is
normally within the interval [3.2–3.0], [4.6–4.2], and [6.1–5.9] if obtained for 2OD, 3OD,
and 4OD terms individually and respectively. Similarly, for realistic systems, theC value is

Table 1

P (ω) 2ODT 3ODT 4ODT

C G C G C G

P(1) = 1 (approximate) 0.75 4.0 0.55 6.0 0.43 8.0
P (2) = 1− |ω/ω0| (realistic case I) 0.60 3.2 0.48 4.6 0.39 6.1
P (3) = cos2(πω/2ω0) (realistic case II) 0.53 3.0 0.43 4.3 0.35 5.9
P (4) = 10/9cos2(πω/2ω0)− 1/9cos2(3πω/2ω0) 0.48 3.1 0.39 4.2 0.32 6.1

(realistic case III)
2ODT+ 3ODT 3ODT+ 4ODT 2OD+ 3ODT

4ODT

C G C G C G

P(1) = 1 (approximate) 0.67 5.0 0.53 6.58 0.65 5.54
P (2) = 1− |ω/ω0| (realistic case I) 0.56 4.02 0.46 4.96 0.55 4.11
P (3) = cos2(πω/2ω0) (realistic case II) 0.50 3.52 0.42 4.54 0.49 3.81
P (4) = 10/9cos2(πω/2ω0)− 1/9cos2(3πω/2ω0) 0.45 3.54 0.38 4.3 0.45 2.97

(realistic case III)
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Fig. 1. Power penalty vs distance for 2OD.

normally within the interval [0.56–0.45] and [0.46–0.38], andG value is normally within
the interval [4.02–3.54] and [4.96–4.30] if obtained for 2OD+ 3OD and 3OD+ 4OD
terms together, respectively. As reported in this paper, theC value is normally within the
interval [0.45–0.65] andG value is normally within the interval [3.72–5.54] if obtained for
2OD+ 3OD+ 4OD terms together for the realistic weight functions.

The results here show thatC andG values are more accurate (because of combined
effects dispersion terms) and within the values obtained in [15] using individual
dispersion terms. Hence, it is possible to enhance the transmitting distance of an optical
communication system (by figure of meritG for specific case) without degrading signal
quality when the dispersion compensating device uses higher-order dispersion terms.

The power penalty for the different cases has been calculated as per Eq. (19) and
plotted in Figs. 1–6 for optimum and zero chirp values for approximate and different
realistic systems. These graphs have been plotted for dispersion of 17 ps/nm/km at
1550 nm with 10 Gb/s bit rate withD2 = 26.41 ps2/km, D3 = 0.0141 ps3/km, and
D4 = 0.0068 ps4/km. Each graph has been plotted for zero and optimum chirp values for
approximate and realistic systems. It is observed for 300 km distance, the power penalty is
varying from 0–6 dB for 2OD dispersion that is well coincident with the results reported
in [14]. As is obvious, the power penalty for realistic systems is less in comparison with
the approximated weight function as shown in Fig. 1. Amongst the realistic functions,
P(4) has least power penalty as compared toP(3) andP(2). P(0) is the power penalty
for zero chirp factor and is the minimum.P(1) is the power penalty for approximate weight
function of unity and is the maximum.

The power penalty for 3OD is found to be varying from 0.0–0.3 dB up to distance
of 300 km. This reflects that the impact of third-order is very small as compared to the
second-order dispersion. The power penalty for 4OD is varying from 0.0–0.04 dB up to
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Fig. 2. Power penalty vs distance for 3OD.

Fig. 3. Power penalty vs distance for 4OD.
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Fig. 4. Power penalty vs distance for 2OD and 3OD.

Fig. 5. Power penalty vs distance for 3OD and 4OD.
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Fig. 6. Power penalty vs distance for 2OD+ 3OD+ 4OD.

distance of 300 km, which is further very small in comparison with second- and third-order
dispersions. For combined cases of 2OD and 3OD, it is seen that the power penalty has
increased slightly from the case of second-order dispersion and is varying from 0.0–6.4 dB
up to distance of 300 km. For 3OD and 4OD, it has been observed that the power penalty
has increased slightly from the case of third- and fourth-order dispersions individually
and is varying from 0.0–0.4 dB up to distance of 300 km. For the combined case of
2OD, 3OD, and 4OD, it is found that the power penalty has increased slightly from the
combined case of second- and third-order dispersions and is varying from 0.0–6.8 dB up to
distance of 300 km. This gives the practical picture with all higher-order dispersion effects
included. For all the cases, the power penalty for the realistic weight functions is less than
the approximate weight function.

Practically, this method proposed can be implemented using an integrated interferome-
ter as mentioned in [14,15]. The method will be most easy to implement at very high-bit
rates, i.e., 20 or 40 Gb/s, since the power spectrum in that case is wider. The wider the
modulated power spectrum, the easier it will be to implement low-loss, sharp, polarization-
independent optical fibers [14]. The method can also be easily implemented through inte-
grated photonic chips with laser amplifiers and detectors [14]. Several delay lines can be
placed on the same chip for suitable design. The proposed method will be very helpful in
choosing the design parameters for practical high-bit rate and long distance optical com-
munication links. By employing practical dispersion compensated devices like dispersion
compensated fibers and Bragg’s gratings, the dispersion terms can be compensated. Then
by choosing the optimum value of chirp factor based on practical realistic weight func-
tions, the performance of optical communication systems can be optimized in terms of
power penalty and transmission distance.
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5. Conclusions

Paper presents the detailed theoretical power penalty analysis for the dispersion
compensation by differential time delay using higher-order (2OD, 3OD, and 4OD)
dispersion terms for approximate and realistic optical communication systems. It has
been shown that the dispersionless propagation length can be enhanced over many times
if compensation is performed using higher-order dispersion terms. For realistic optical
communication systems, this propagation length decreases. The power penalty due to
all the combinations of dispersion cases has been analyzed and it is observed that the
higher-order dispersion terms have significant impact on the power penalty of the system.
This impact decreases as the order of dispersion term increases. The impact of 3OD and
4OD is small as compared to 2OD but still has contribution when the combined terms
are considered. The power penalty for realistic systems is less in comparison with the
approximated weight function as these are more accurate. Amongst the realistic functions,
P(4) has least power penalty as compared toP(3) andP(2). P(0) is the power penalty for
zero chirp factor and is the minimum.P(1) is the power penalty for approximate weight
function of unity and is the maximum.
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